Azilsartan Improves Salt Sensitivity by Modulating the Proximal Tubular Na+-H+ Exchanger-3 in Mice
نویسندگان
چکیده
A potent angiotensin II type-1 receptor blocker, azilsartan, has been reported to reduce blood pressure more effectively than candesartan. Interestingly, azilsartan can also restore the circadian rhythm of blood pressure. We hypothesized that azilsartan could also improve salt sensitivity; thus, we examined the effect of azilsartan on sodium handling in renal tubules. Subtotal nephrectomized C57BL/6 mice received azilsartan (1.0 mg/kg/day), candesartan (0.3 mg/kg/day), or vehicle via the oral route in conjunction with a normal- (0.3%) or high-salt (8.0%) diet. Two weeks later, the azilsartan group showed significantly lower blood pressure during the light period than the candesartan and vehicle groups (azilsartan: 103.1 ± 1.0; candesartan: 111.7 ± 2.7; vehicle: 125.5 ± 2.5 mmHg; P < 0.05; azilsartan or candesartan vs. vehicle). The azilsartan group also showed higher urinary fractional excretion of sodium during the dark period than the candesartan and vehicle groups (azilsartan: 21.37 ± 3.69%; candesartan: 14.17 ± 1.42%; vehicle: 13.85 ± 5.30%; P < 0.05 azilsartan vs. candesartan or vehicle). A pressure-natriuresis curve demonstrated that azilsartan treatment restored salt sensitivity. Immunofluorescence and western blotting showed lower levels of Na+-H+ exchanger-3 (NHE3) protein (the major sodium transporter in renal proximal tubules) in the azilsartan group, but not in the candesartan or vehicle groups. However, azilsartan did not affect NHE3 transcription levels. Interestingly, we did not observe increased expression of downstream sodium transporters, which would have compensated for the increased flow of sodium and water due to non-absorption by NHE3. We also confirmed the mechanism stated above using cultured opossum kidney proximal tubular cells. Results revealed that a proteasomal inhibitor (but not a lysosomal inhibitor) blocked the azilsartan-induced decrease in NHE3 protein expression, suggesting that azilsartan increases NHE3 ubiquitination. In conclusion, azilsartan (but not candesartan) improved salt sensitivity possibly by decreasing NHE3 expression via ubiquitin-proteasomal degradation.
منابع مشابه
Modulation of adenosine receptor expression in the proximal tubule: a novel adaptive mechanism to regulate renal salt and water metabolism.
ABOUT 180 LITERS OF FILTRATE are produced by the human kidneys every day, with more than 99% of the filtered salt and water being subsequently reabsorbed along the nephron. In view of this high level of renal filtration, even slight alterations in the balance between filtration and reabsorption will result in potentially life-threatening derangements of electrolyte and volume balance. Consequen...
متن کاملNew mechanism leading to alleviation of salt-sensitive hypertension by a powerful angiotensin receptor blocker, azilsartan
Hypertension is one of the most life-threatening health problems in the modern world. Particularly, salt-sensitive hypertension is often associated with cardiovascular disease and defects in the circadian rhythm of the blood pressure. To date, the effects of angiotensin receptor blocker (ARB) against salt sensitivity and the blood pressure’s circadian rhythm have been obscure. A strong ARB, azi...
متن کاملNHE3 Na+/H+ exchanger supports proximal tubular protein reabsorption in vivo.
Proximal tubular receptor-mediated endocytosis (RME) of filtered proteins prevents proteinuria. Pharmacological and genetic studies in cultured opossum kidney cells have shown that the apical Na(+)/H(+) exchanger isoform 3 (NHE3) supports RME by interference with endosomal pH homeostasis and endocytic fusion events. However, it is not known whether NHE3 also supports proximal tubular RME in viv...
متن کاملProximal tubular NHEs: sodium, protons and calcium?
Na⁺/H⁺ exchange activity in the apical membrane of the proximal tubule is fundamental to the reabsorption of Na⁺ and water from the filtrate. The role of this exchange process in bicarbonate reclamation and, consequently, the maintenance of acid-base homeostasis has been appreciated for at least half a century and remains a pillar of renal tubular physiology. More recently, apical Na⁺/H⁺ exchan...
متن کاملAlbumin regulates the Na+/H+ exchanger 3 in OKP cells.
Albumin filtered by the glomerulus is reabsorbed in the proximal tubule. We have shown previously that proteinuria stimulates the proximal tubular Na(+)/H(+) exchanger 3 (NHE3) in rats. Activation of NHE3 may be a pathophysiologically important factor in the development of renal salt and water retention observed in the nephrotic syndrome. For examining whether albumin is a specific inducer of p...
متن کامل